Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(17): 8455-8461, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38577747

RESUMO

Polymer dielectrics play an irreplaceable role in electronic power systems because of their high power density and fast charge-discharge capability, but it is limited by their low stability in the temperature range of 25-200 °C. Rather than the introduction of one-dimensional fillers in polymers, we used a kind of multidimensional synergistic design to prepare Al2O3-TiO2-Al2O3/PI composites with layered structures by introducing multi-dimensional materials in polyimide (PI). In fact, the composite achieves much higher temperature stability than the pure PI film. The optimally proportioned composite has an energy density of 3.41 J cm-3 (vs. 1.48 J cm-3 for pure PI) even at 200 °C. Additionally, it reaches an impressive energy density retention of up to 90% and maintains an energy efficiency as high as 86% at 400 MV m-1 in the temperature range of 25-200 °C. The multidimensional coordination design is proposed to obtain composite films, and provides a feasible strategy in the study of polymer-based composites with high-temperature performance.

2.
Dalton Trans ; 53(10): 4501-4511, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38348684

RESUMO

Aqueous zinc ion batteries (AZIBs) have attracted sustained attention owing to their intrinsic safety and low cost. Unfortunately, the dendrite growth and parasitic side reactions of metallic zinc anodes severely degrade the cycling stability of the batteries and limit the practical application of AZIBs. In this work, calcium gluconate (CG), a chelating agent, as a novel electrolyte additive was introduced to tackle the thorny issue of zinc anodes in a 2 M ZnSO4 electrolyte by the synergistic effects of gluconate (GA-) anions and Ca2+ cations. Experimental characterization and computational simulations confirmed that the incorporation of GA- can not only mitigate the precipitation of Ca2+ ions, but also affect the primary solvation shell (PSS) of Zn2+ and modulate the electrode/electrolyte interfacial reaction, thereby inhibiting side reactions. Besides, trace amounts of Ca2+ cations can preferentially adsorb on the surface of the zinc anode tip, forming an electrostatic shielding shell that guides the uniform deposition of zinc ions. The Zn//Zn symmetric cells achieved a remarkably prolonged cycling lifespan ranging from 174 h to 3745 h at 6.37 mA cm-2 and 2.88 mA h cm-2 with an ultrahigh cumulative plating capacity (CPC) of about 11 900 mA h cm-2. Even at a higher current density of 5 mA cm-2 and an areal specific capacity of 5 mA h cm-2, Zn//Zn cells with the CG additive cycled for 248 h, about 5 times better than that without the CG additive. These results pave the way for the exploitation of new electrolyte additives with synergistic effects in AZIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...